If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+35X-175=0
a = 1; b = 35; c = -175;
Δ = b2-4ac
Δ = 352-4·1·(-175)
Δ = 1925
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1925}=\sqrt{25*77}=\sqrt{25}*\sqrt{77}=5\sqrt{77}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-5\sqrt{77}}{2*1}=\frac{-35-5\sqrt{77}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+5\sqrt{77}}{2*1}=\frac{-35+5\sqrt{77}}{2} $
| 7x+7=-4+3x | | 3x-8-5x-6x+14x=16+5x-20 | | 6t=78. | | x/2+x/4+x/7+3=28 | | 12n-3=1 | | 9-3(8-5x)=-13 | | 248=62n | | x/2+x/4+x/7+3=x | | 4x-7=5x-5 | | 10x-8=5x-8 | | 7x-3x(x²+2)-3x²=0 | | x=x/2+x/4+x/7+3 | | 3(7+w)=2(4+w) | | -6=8-h | | 8-x=2x+4 | | -1/3x+1=7x-14 | | 5x-4=-52+x | | a7/8=5 | | 7/8a=5 | | 13=9m+4 | | -2(x-7)+8=7x-8 | | 2x=4/2x-2 | | 2x+5=7x+14 | | 0.6m+1/3=18+1/3 | | 4(n-7)-(6-3n)=6n | | -2+f/2=-1 | | 4x+3=(6x+8)+(2x+13) | | (x-4)/16=0 | | -2x+13=3x-11 | | -3 | | 7z-2=5z+6 | | 7z-2=5z=6 |